Elimination of retroviral infectivity by N-ethylmaleimide with preservation of functional envelope glycoproteins.
نویسندگان
چکیده
The zinc finger motifs in retroviral nucleocapsid (NC) proteins are essential for viral replication. Disruption of these Cys-X2-Cys-X4-His-X4-Cys zinc-binding structures eliminates infectivity. To determine if N-ethylmaleimide (NEM) can inactivate human immunodeficiency virus type 1 (HIV-1) or simian immunodeficiency virus (SIV) preparations by alkylating cysteines of NC zinc fingers, we treated infectious virus with NEM and evaluated inactivation of infectivity in cell-based assays. Inactivation was rapid and proportional to the NEM concentration. NEM treatment of HIV-1 or SIV resulted in extensive covalent modification of NC and other internal virion proteins. In contrast, viral envelope glycoproteins, in which the cysteines are disulfide bonded, remained intact and functional, as assayed by high-performance liquid chromatography, fusion-from-without analyses, and dendritic cell capture. Quantitative PCR assays for reverse transcription intermediates showed that NEM and 2,2'-dipyridyl disulfide (aldrithiol-2), a reagent which inactivates retroviruses through oxidation of cysteines in internal virion proteins such as NC, blocked HIV-1 reverse transcription prior to the formation of minus-strand strong-stop products. However, the reverse transcriptase from NEM-treated virions remained active in exogenous template assays, consistent with a role for NC in reverse transcription. Since disruption of NC zinc finger structures by NEM blocks early postentry steps in the retroviral infection cycle, virus preparations with modified NC proteins may be useful as vaccine immunogens and probes of the role of NC in viral replication.
منابع مشابه
Assembly of functional hepatitis C virus glycoproteins on infectious pseudoparticles occurs intracellularly and requires concomitant incorporation of E1 and E2 glycoproteins.
Hepatitis C virus (HCV) E1 and E2 envelope glycoproteins (GPs) displayed on retroviral cores (HCVpp) are a powerful and highly versatile model system to investigate wild-type HCV entry. To further characterize this model system, the cellular site of HCVpp assembly and the respective roles of the HCV GPs in this process were investigated. By using a combination of biochemical methods with confoc...
متن کاملGuanylate binding protein 5: Impairing virion infectivity by targeting retroviral envelope glycoproteins
Guanylate binding proteins (GBPs) are interferon-inducible cellular factors that belong to the superfamily of guanosine triphosphatases (GTPases) and play important roles in the cell-intrinsic defense against bacteria, protozoa and viruses. In a recent report in Cell Host & Microbe, we identify GBP5 as novel restriction factor of HIV-1 that reduces the infectivity of progeny virions by interfer...
متن کاملSpontaneous heteromerization of gammaretrovirus envelope proteins: a possible novel mechanism of retrovirus restriction.
The env gene of gammaretroviruses encodes a glycoprotein conserved among diverse retroviruses, except for the domains involved in receptor binding. Here we show that pairs of gammaretrovirus envelope proteins (from Friend virus and GALV or xenotropic viruses) assemble into heteromers when coexpressed. This assembly results in a strong inhibition of infectivity. An unrelated envelope protein doe...
متن کاملMutation of the Putative Immunosuppressive Domain of the Retroviral Envelope Glycoprotein Compromises Infectivity
The envelope glycoprotein of diverse endogenous and exogenous retroviruses is considered inherently immunosuppressive. Extensive work mapped the immunosuppressive activity to a highly conserved domain, termed the immunosuppressive domain (ISD), in the transmembrane (TM) subunit of the envelope glycoprotein and identified two naturally polymorphic key residues that afford immunosuppressive activ...
متن کاملInverse targeting of retroviral vectors: selective gene transfer in a mixed population of hematopoietic and nonhematopoietic cells.
We previously reported that retroviral vectors displaying epidermal growth factor (EGF) as part of a chimeric envelope glycoprotein are sequestered upon binding to EGF receptor (EGFR)-positive target cells, leading to loss of infectivity. In the current study, we have displayed stem cell factor (SCF) on beta-galactosidase-transducing ecotropic and amphotropic retroviral vector particles as a fa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of virology
دوره 79 3 شماره
صفحات -
تاریخ انتشار 2005